Principes et techniques de détection à haute énergie

Ecole IN2P3 « De la physique au détecteur »

Patrick Puzo Laboratoire de l'Accélérateur Linéaire Université Paris-Sud puzo@lal.in2p3.fr

- Aucun calcul, tout (ou presque) avec les mains
- Je ne montrerai pas tous les transparents, certains ne sont là que pour servir de backup
- Cours très (trop) structuré
- Prérequis :
 - Un peu de physique générale, un zeste de relativité et une pincée de Modèle Standard
- N'hésitez pas à poser des questions !

- Les détecteurs ont joué un rôle déterminant dans le développement de la physique depuis le début du 20^e siècle
- Certains d'entre eux ont été particulièrement distingués :
 La chambre à brouillard (C. Wilson, prix Nobel en 1927)
 La chambre à bulles (D. Glaser, prix Nobel en 1960)
 La chambre à fils (G. Charpak, prix Nobel en 1992)
 Les CCD (W. Boyle & G. Smith, prix Nobel en 2009)
- Domaine multidisciplinaire : en sus de la physique nucléaire, implique la thermodynamique, la matière condensée, la chimie, l'optique, la mécanique, ..

- Le but est d'obtenir le maximum d'information sur la (les) particule(s) :
 - 1. Identifier les particules (pour éventuellement les compter)
 - Masse m
 - Charge q
 - 2. Mesurer leurs caractéristiques
 - Energie $E = \gamma m c^2$
 - Quantité de mouvement ou impulsion

$$p = \gamma m \beta c \approx \gamma m c$$

 $\gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{1 - \beta^2}}$

Relativité restreinte !

- Quelques échelles de temps :
 - Une particule à v = c parcourt 30 cm en 1 ns
 - En 1 µs, un électron d'ionisation parcourt 5 cm dans un détecteur gazeux
 - En 1 ms, un proton fait 11 fois le tour du LHC (11×27 ≈ 300 km) et un ion parcourt 5 cm dans un détecteur gazeux

	Muon	Pion	Méson B
Durée de vie	2,2 µs	26 ns	1 ps
Parcours	660 m	7,8 m	300 µm

Dans un détecteur, une particule sera élémentaire ou non, stable ou non : électron (e⁻), positron (e⁺), proton (p), neutron (n), pion (π^+, π^+) , particule alpha ($\alpha = 2p+2n = He^{2+}$), ion, ...

Plan

Sources et références

- « Particle Detectors », C. Grupen and B. Schwartz, 1996
- CERN Summer Student Lectures
 - □ En particulier « Particule Detectors », C. Joram (2002)
- Ecoles de l'IN2P3 (L. Serin, F. Hubaut, B. Tamain, P.Y. Duval & P. Vincent principalement)
 - Roscoff (2003), Cargèse (2004 et 2005) et La Londe les Maures (2010)

Je ne les citerai pas à chaque fois, mais beaucoup de transparents y trouvent leur inspiration

Un peu de vocabulaire ... (1/3)

- Accélérateurs/collisionneurs
 - Passé

Antiproton dans ma présentation (et non \overline{p})

- CERN (Genève) : SppbarS (p, pbar), LEP (e⁺, e⁻)
- SLAC (Stanford) : PEP (e⁺, e⁻), SLC (e⁺, e⁻), PEP II (e⁺, e⁻)
- DESY (Hambourg) : HERA (e, p)
- Fermilab (Chicago) : Tevatron (p, pbar)
- KEK (Tsukuba) : KEK-B (e⁺, e⁻)
- Présent
 - BNL (New York) : RHIC (Au, Au)
 - GANIL (Caen) : SPIRAL (ions)
 - CERN : LHC (p, p)
- Futur lointain
 - ILC (e⁺, e⁻) en ?

Un peu de vocabulaire ... (2/3)

- Les expériences sur accélérateur
 - Passé
 - CERN (LEP) : ALEPH, DELPHI, OPAL, L3
 - DESY (HERA) : H1, ZEUS, Hermès
 - SLAC (PEP II) : BaBar
 - CERN (SPS) : NA49
 - Fermilab (Tevatron) : DO, CDF
 - KEK (KEK-B) : BELLE
 - Présent
 - CERN (LHC) : ATLAS, CMS, LHCb, Alice
 - Futur lointain
 - ? (ILC) : ILD, SID

Un peu de vocabulaire ... (3/3)

- Les expériences hors accélérateur
 - Passé
 - Tau-p, NOMAD, CHORUS, AMANDA, NEMO
 - Présent
 - Kamioka : Super-Kamiokande
 - Gran Sasso : OPERA
 - Pôle sud : IceCube
 - Lac Baikal : Baïkal neutrino experiment
 - Méditerranée : Antarès
 - Argentine : Auger
 - Espace : Planck & AMS

Plan

- I. Interaction particule-matière
 - 1) Généralités
 - 2) Particules lourdes chargées
 - 3) Particules légères chargées
 - 4) Photons
 - 5) Neutrinos
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Trois interactions nous concernent

- 1) Interaction électromagnétique
 - Particule chargée
 - Electron atomique : excitation ou ionisation de l'atome
 - Noyau : diffusion (élastique ou inélastique), bremsstrahlung, production de paires
 - Rayonnement cohérent : effet Cherenkov, rayonnement de transition
 - Particule neutre : (presque) pas d'interaction
 - Photon
 - Electron atomique : diffusion Compton, effet photoélectrique
 - Noyau : production de paires

2) Interaction forte

- Négligeable sauf entre les hadrons de haute énergie et les noyaux
- 3) Interaction faible
 - Négligeable la plupart du temps, sauf pour les neutrinos
- Les particules neutres sont généralement détectées par le biais des particules chargées secondaires créées lors de l'interaction avec la matière
- Généralement, à basse énergie, les interactions avec les électrons atomiques sont dominantes, tandis qu'à haute énergie, les interactions avec les noyaux sont dominantes

Plan

- I. Interaction particule-matière
 - 1) Généralités
 - 2) Particules lourdes chargées
 - 3) Particules légères chargées
 - 4) Photons
 - 5) Neutrinos
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

- A basse énergie, une particule lourde perd de l'énergie dans la matière lors de collisions avec les électrons atomiques de la cible par échange d'un photon :
 - Excitation de l'atome
 - Si $\hbar\omega$ est suffisamment grand, on peut observer une ionisation
 - □ Les électrons d'ionisation sont parfois assez énergétiques pour ioniser d'autres atomes du milieu (électrons δ)
 - Dans certains cas, le photon peut s'échapper du milieu au lieu d'ioniser l'atome (effet Cherenkov et rayonnement de transition)

- Les collisions avec le noyau sont négligeables ($m_e \ll m_{Noy}$) tant que l'énergie n'est pas trop élevée
- Le terme « collision » est à prendre au sens de la physique quantique et non de la physique galiléenne
 - Rien à voir avec une collision automobile mais plutôt comme une interaction à plus ou moins grande distance
- Une quantité importante pour caractériser la collision est le paramètre d'impact (distance minimale d'approche entre les deux particules)

- La section efficace est très faible ($\sigma \approx 10^{-16}$ - 10^{-17} cm²) mais le nombre d'atomes est très élevé ($N_A \approx 10^{23}$ atomes/cm³)
 - $\hfill\square$ Un proton de 10 MeV perd toute son énergie dans 250 μm de cuivre
- Le nombre d'interactions est régit par la statistique, mais il est très grand :
 - $\square \Rightarrow$ les fluctuations relatives sont très petites
 - En pratique, on observe une diminution « continue » de l'énergie jusqu'à l'énergie thermique des atomes du milieu
 - On utilise la perte d'énergie moyenne par unité de longueur sur le parcours :

 La Mécanique Quantique relativiste permet d'obtenir la formule de Bethe – Bloch qui décrit l'énergie moyenne perdue par les particules par ionisation :

$$\left\langle \frac{dE}{dx} \right
angle \,=\, -\,4\,\pi\,N_A\,r_e^2\,m_e\,c^2\,rac{Z}{A}\,rac{z^2}{eta^2}\,\left[\ln\left(rac{2\,m_e\,c^2\,\gamma^2\,eta^2}{I^2}
ight) -eta^2 -rac{\delta}{2} -rac{C}{Z}
ight]$$

- Domaine de validité :
 - Dès que la particule incidente a une
 vitesse > vitesse des électrons atomiques

$$eta_{min}~=~rac{v}{c}~pprox~0.01$$

- Tant qu'un autre phénomène (le rayonnement de freinage voir plus loin) ne domine pas :
 - Typiquement, il faut pour des muons une énergie E < 1 TeV

$$\left\langle \frac{dE}{dx} \right
angle \,=\, -\,4\,\pi\,N_A\,r_e^2\,m_e\,c^2\,\frac{Z}{A}\,\frac{z^2}{\beta^2}\,\left[\ln\left(\frac{2\,m_e\,c^2\,\gamma^2\,\beta^2}{I^2}\right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z}
ight]$$

Dépendances :

- Ne dépend pas de la masse de la particule incidente mais uniquement de sa charge z et de sa vitesse β !
- Dépend de la cible par l'intermédiaire de Z, A, I, δ et C
- Constantes : N_A, r_e, m_e, Z, A

Nombre
d'AvogadroRayon classique
et masse de l'e-Charge et masse
atomique de la cible
$$N_A \approx 6,02 \ 10^{23} \ \mathrm{mol}^{-1}$$
 $r_e = \frac{e^2}{4 \pi \epsilon_0 m_e c^2} \approx 2,8 \ \mathrm{fm} = 2,8 \ 10^{-15} \ \mathrm{m}$

• N_A s'exprime en mol⁻¹, r_e en cm, $m_e c^2$ en MeV, A en g/mol

$$\left\langle \frac{dE}{dx} \right\rangle \Rightarrow s' \text{exprime en MeV } g^{-1} \text{ cm}^2$$

2

$$K = 4\pi N_A r_e^2 m_e c^2 \approx 0,307 \text{ MeV g}^{-1} \text{ cm}^2$$

$$On \text{ pose}:$$

$$\left\langle \frac{dE}{dx} \right\rangle = -K \frac{Z}{A} \frac{z^2}{\beta^2} \left[\ln \left(\frac{2m_e c^2 \gamma^2 \beta^2}{I^2} \right) - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right]$$

T 7

- Formule précise à quelques % près de quelques MeV ($\beta \approx 0,1$) à des centaines de GeV
- $dx = \rho dl$ est la densité surfacique du milieu (ρ : densité volumique en q/cm^3)
- A partir de maintenant, on écrira $rac{dE}{dx}$ et non plus $\left\langle rac{dE}{dx}
 ight
 angle$

Constantes

- C/Z est une correction de couche : à basse énergie, les particules incidentes ont peu de chance d'interagir avec les e- des couches profondes
- δ traduit un effet de densité : à très haute énergie, la polarisation du milieu écrante le champ E_T pour les atomes les plus lointains

Particules lourdes chargées

Energie perdue par des muons dans du cuivre en fonction de $\beta\gamma$

- dE/dx décroît comme $\beta^{-5/3}$ pour $\beta\gamma < 3$
- dE/dx a un minimum pour $\beta\gamma \approx 3.5$ (Minimum Ionizing Particle ou MIP) pour lesquelles $dE/dX \approx 1 2$ MeV g^{-1} cm²

- Au delà du minimum, dE/dx remonte en $ln(\gamma^2)$
 - Dû au champ électrique transverse E_T qui a un effet sur des atomes de plus en plus éloignés
- A très haute énergie, la remontée relativiste est interrompue par un effet de densité : la polarisation du milieu le long de la trace écrante les atomes lointains (plateau de Fermi)

- La position et la valeur du minimum dépendent peu du type de particule
 dE/dX ≈ 1 2 MeV g⁻¹ cm²
- Les courbes pour différentes particules sont différentes car β varie (à p constant)
- Les détecteurs réels ne mesurent pas dE/dx mais l'énergie ΔE déposée dans l'épaisseur Δx
- NB : Selon les auteurs, *dE/dx* est compté positivement ou négativement

MIP

ᇝ

Forme des distributions de dE/dx

- Petites épaisseurs (ou matériaux de basse densité) :
 - Peu de collisions, mais certaines d'entre elles ont un grand transfert d'énergie
 - Les fluctuations (dues aux électrons δ) deviennent importantes
 - Les distributions de dE/dx présentent de grandes fluctuations vers les pertes élevées (queues de Landau)
 - Distributions asymétriques
 - Typiquement quelques dizaines de collisions dans 1 cm de gaz
- Grandes épaisseurs (ou matériaux de haute densité) :
 - Beaucoup de collisions
 - Les distributions de dE/dx sont gaussiennes

3 GeV/c π⁻⁻

1.5 cms

Parcours des

Parcours

 Le parcours R est la distance parcourue dans le matériau par une particule jusqu'à ce qu'elle s'arrête

$$R(E_0) \;=\; \int_0^{E_0} rac{1}{dE/dx} \, dE$$

• On pourrait montrer que R/M est une fonction universelle de $\beta\gamma$

 Utilisé en médecine nucléaire (hadron ou protonthérapie) Courbe de Bragg de protons de 70 MeV dans de l'eau

Plan

I. Interaction particule-matière

- 1) Généralités
- 2) Particules lourdes chargées
- 3) Particules légères chargées
- 4) Photons
- 5) Neutrinos
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

- On considère tout d'abord des électrons ou des positrons
- La formule de Bethe-Bloch doit être modifiée car la masse de la particule incidente est égale à la masse de l'électron atomique
- On doit considérer
 - La diffusion de Möller
 - Diffusion inélastique sur les électrons atomiques
 - La diffusion de Mott
 - Diffusion élastique sur les noyaux. Perturbe beaucoup les trajectoires des e[±] sans trop modifier leur énergie
 - Contrairement aux particules lourdes, la portée est différente de la longueur de la trajectoire

Après calculs, on obtient :

$$\frac{dE}{dx} = -K \frac{Z}{A\beta^2} \left[\ln \left(\frac{m_e c^2 T \sqrt{T+2}}{I \sqrt{2}} \right) + \frac{f(T)}{2} - \frac{\delta}{2} \right]$$

- où Test l'énergie cinétique de la particule incidente (en unité de m_ec^2) et f(T) une fonction (différente pour l'électron et le positron)
- Remarque : il est « évident » d'après la Mécanique Quantique que les cas des électrons et des positrons incidents doivent être différents (problème des particules identiques)

Un nouveau mécanisme

 Une particule chargée (légère) va rayonner un photon réel dans le champ coulombien d'un noyau

Bremsstrahlung ou rayonnement de freinage

- Ne s'applique que pour les e^{\pm} (et les μ d'énergie > 1 TeV)
- Pour des e[±], montre que :

$$\frac{dE}{dx} = -\frac{E}{X_0} \qquad X_0 = \frac{A}{4 \alpha N_A Z^2 r_e^2 \ln\left(\frac{138}{Z^{1/3}}\right)}$$

- Proportionnel à E: domine à haute énergie
- Définit la longueur de radiation X_0 (g/cm²)

 Le lien entre la longueur de radiation en g/cm² et la même quantité en cm est :

$$X_{0[g/cm^2]} = \rho_{[g/cm^3]} X_{0[cm]}$$

• En rajoutant la correction due à l'effet d'écran, on obtient :

$$X_{0[g/cm^2]} = \frac{716 A}{Z (Z+1) \ln\left(\frac{287}{\sqrt{Z}}\right)}$$

Un exemple

 Une part non négligeable de l'énergie (jusqu'à ≈ 100%) peut être emportée par les photons issus du rayonnement de freinage
 ⇒ grande fluctuation de la longueur du parcours

Pertes totales

On a finalement :

Energie critique

- L'énergie critique est par définition l'énergie à laquelle les pertes par ionisation et par rayonnement de freinage sont égales
- Pour e[±], on obtient approximativement :

Bremsstrahlung des particules lourdes

Pour une particule de masse m et de charge ze, on peut montrer que :

$$\left. \frac{dE}{dx} \right|_{Rayonnement} (m, z) = \left(\frac{m_e}{m} \right)^2 z^2 \left. \frac{dE}{dx} \right|_{Rayonnement} (e^-)$$

Pour μ^{\pm} , on obtient approximativement :

$$E_c \approx E_c^{Electron} \left(\frac{m_\mu}{m_e}\right)^2$$

Exemple du Fer (Z = 26) :

$$E_c(e^-) = 22,4 \text{ MeV}$$
 et $E_c(\mu) = 1 \text{ TeV}$
On comprend maintenant toute la courbe dE/dx

Energie déposée par des muons dans du cuivre

Plan

I. Interaction particule-matière

- 1) Généralités
- 2) Particules lourdes chargées
- 3) Particules légères chargées
- 4) Photons
- 5) Neutrinos
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Interaction des photons avec la matière

- Pour être détecté, un γ doit créer des particules chargées et/ou transférer de l'énergie à des particules chargées qui seront ensuite détectées. Plusieurs effets possibles :
 - Effet photoélectrique (dominant pour $E_{\gamma} < 100$ keV)
 - □ Diffusion Compton (dominant pour $E_{\gamma} \approx 1$ MeV)
 - Production de paires (dominant pour $E_{\gamma} > 1$ MeV)
- Dans chaque cas, le γ est absorbé ou diffusé élastiquement. Les γ gardent leur énergie mais l'intensité du faisceau diminue
- On définit l'atténuation μ par :

$$I(x) = I_0 \exp(-\mu x)$$

Effet photoélectrique

- Mécanisme : γ + atome \rightarrow atome⁺ + e⁻
- Concerne principalement les e⁻ de la couche K

 $\mathcal{M}_{\gamma}^{\theta_{\gamma}}$

Diffusion Compton

Création de paires

• Mécanisme : γ + noyau \rightarrow e⁻ + e⁺ + noyau

e. Z

- Se produit dans le champ coulombien d'un noyau ou d'un électron uniquement si $E_{\gamma}~>~2\,m_e\,c^2~\approx~1~{
 m MeV}$
- Section efficace à haute énergie (cm²/atome) :

$$\sigma_{Paire} \approx \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$
 Indépendant de l'énergie !!

• On introduit λ_{Paire} par :

$$\lambda_{Paire} = rac{9}{7} X_0$$

 En moyenne, un γ de haute énergie se convertira en e⁺e⁻ après 1 X₀

Plan

I. Interaction particule-matière

- 1) Généralités
- 2) Particules lourdes chargées
- 3) Particules légères chargées
- 4) Photons
- 5) Neutrinos
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Interaction des neutrinos avec la matière

- Les neutrinos ne sont sensibles qu'à l'interaction faible
 Les sections efficaces sont très petites
- Pour les détecter, il faut les faire interagir :

- Typiquement, les efficacités de détection sont de l'ordre de 10⁻¹⁷ dans 1 m de fer
 - Les détecteurs spécialisés pour les neutrinos doivent être énormes et parfois accepter de très hauts flux

Exemple : UA1

- Dans les expériences sur collisionneurs, on attribue l'énergie et l'impulsion transverse manquantes au(x) neutrino(s)
- Cette méthode a permis dans UA1 de reconstruire le neutrino de :

 Il faut une confiance énorme dans la théorie (et dans les détecteurs !) pour tenir ce genre de raisonnement ...

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
 - 1) Généralités
 - 2) Détecteurs à ionisation : compteurs proportionnels
 - 3) Détecteurs à ionisation : chambres à dérive
 - 4) Détecteurs à scintillation
 - 5) Détecteurs à semi-conducteurs
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Pourquoi reconstruire les traces chargées ?

 \Rightarrow Le signe de la charge est obtenu par le sens de courbure dans un champ B

Rappel : Mouvement d'une particule chargée dans un champ B

Pour une particule non relativiste :

$$\frac{d\vec{p}}{dt} = q \, \vec{v} \times \vec{B} = \frac{q}{m} \, \vec{p} \times \vec{B}$$

- □ La particule tourne autour de *B* à la fréquence cyclotron ($\omega_c = qB/m$)
- Pour une particule relativiste :

$$\frac{d\vec{p}}{dt} = q \, \vec{v} \times \vec{B} = \frac{q}{\gamma \, m} \, \vec{p} \times \vec{B}$$

- □ La particule tourne autour de *B* à la fréquence $\omega_c = qB/\gamma m$
- Dans le plan transverse au champ B, la trajectoire est circulaire (à énergie constante)

Mesure de l'impulsion dans un champ B

Utilité d'une bonne résolution en position au plus prêt de la collision

⇒ Une bonne extrapolation est nécessaire pour reconstruire les vertex secondaires

4 événements dans ATLAS répartis en -32 et + 19 mm

Un croisement de paquets auprès de CMS avec 78 événements reconstruits

- Pour mesurer l'impulsion ou pour reconstruire par extrapolation les vertex secondaires, on doit pouvoir mesurer dans l'espace la trajectoire des particules (chargées)
- Basé sur les processus physiques vu précédemment
- Il y a plusieurs façons de transcrire en un signal électrique les réactions décrites précédemment. Traditionnellement, on les regroupe en 3 catégories :
 - Détecteurs à ionisation (compteurs proportionnels et chambres à dérive)
 - Détecteurs à scintillation
 - Détecteurs à semi-conducteurs

Les détecteurs à ionisation

- Bref historique :
 - Protohistoire : chambres à brouillard et compteurs Geiger
 - Histoire : chambres à bulles et émulsions photographiques
 - Actuellement : compteurs proportionnels et chambres à dérive
- Ils détectent le passage d'une particule chargée en mesurant la charge totale (électrons+ions) produite par l'ionisation du milieu
- Le milieu peut être un gaz, un liquide ou un solide
- Pour récupérer les électrons avant la recombinaison, il faut appliquer un champ E

Il faudra une amplification car détecter \approx 100 paires e-/ion n'est pas simple !

50

Le détecteur gazeux le plus simple : la chambre à ionisation

• On a typiquement pour d = 5 cm et E = 500 V/cm

 $\Box \Delta t^{+} = 7,5 \text{ mm/ms et } \Delta t^{-} = 5 \text{ mm/ms}$

 Les signaux sont extrêmement faibles et nécessitent une électronique de pointe !

Détecteurs à ionisation

- Dans un détecteur à ionisation, les électrons et les ions créés sont utilisés pour générer un signal mesurable
 - On les fait dériver dans un champ électrique
- Le signal est souvent faible et doit généralement être amplifié
- On peut s'attendre à ce que le choix du gaz soit critique

Nombre d'ions collectés pour des α et des électrons

- Il existe plusieurs types de détecteurs liés à divers modes de fonctionnement :
 - Recombinaison (inutile)
 - Chambres à ionisation :
 - Toute la charge initiale est recueillie sans amplification
 - Gain ≈ 1
 - Compteurs proportionnels
 - Le champ *E* est suffisamment fort pour induire des avalanches secondaires
 - Gain ≈ 10⁴-10⁵

Tension (échelle arbitraire)

Nombre d'ions collectés pour des α et des électrons

- Compteurs proportionnels saturés
 - Champ E encore plus élevé
 - HT pulsée
 - Gain ≈ 10⁸-10⁹
- Compteurs Geiger Muller
 - Tout le fil d'anode est affecté
 - Coupure de la HT pour arrêter le processus

Nombre d'ions collectés pour des α et des électrons

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
 - 1) Généralités
 - 2) Détecteurs à ionisation : compteurs proportionnels
 - 3) Détecteurs à ionisation : chambres à dérive
 - 4) Détecteurs à scintillation
 - 5) Détecteurs à semi-conducteurs
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Le plus simple des compteurs proportionnels : un fil

- Les électrons dérivent vers le fil d'anode. Le champ E est en 1/r. Au delà d'un certain seuil, les électrons ionisent le gaz : avalanche !
 - Gain typique : $10^4 10^5$
 - L'échelle de temps de l'amplification est de l'ordre de quelques ns
 - Mesure dans une direction uniquement
- Le signal est proportionnel à l'ionisation initiale : on mesure dE/dx
- De l'ordre d'une centaine de paires e⁻/ion
 - □ Pas facile à détecter : bruit électronique ≈ 10 fois plus élevé

Compteurs proportionnels

- Dynamique non triviale :
 - a) L'électron unique dérive vers l'anode
 - b) Début de l'avalanche
 - c) Comme les électrons et les ions sont créés au même endroit, l'avalanche s'arrête lorsque le champ E est diminué par le champ des ions
 - d) Le nuage d'électrons dérive rapidement vers l'anode (50 mm/ ms sur 20 mm → max 1-2 ns)
 - e) Le nuage des ions dérive lentement vers la cathode

 La charge dQ induite sur le fil central par le déplacement dx de la charge q est :

$$V_0 \, dQ \; = \; q \, E(x) \, dx$$

$$Q = \int dQ = \int_{debut}^{fin} \frac{q E(x)}{V_0} dx = \frac{q}{V_0} (V(x_{debut}) - V(x_{fin}))$$

 Les charges sont induites sur le fil par la dérive des charges. Les électrons ne traversent qu'une petite partie du détecteur : le signal provient surtout de la dérive des ions

Choix du gaz

- On choisit généralement des gaz nobles (monoatomiques à couches pleines) pour lesquels la dissipation d'énergie a lieu principalement par ionisation (pas d'états de vibration ou de rotation)
- La contrepartie à l'utilisation des gaz nobles est qu'un atome excité a une très forte probabilité de se désexciter par émission d'un photon UV (11.6 eV pour Ar)
- Cette valeur est > au seuil d'ionisation pour les métaux (exemple 7.7 eV pour Cu)
 - Avalanche permanente par émission d'électrons par les parois !

- Pour résoudre le problème, on introduit dans le gaz noble une petite quantité d'un gaz polyatomique possédant des états de vibration et de rotation
 - Ce quencher va absorber les photons UV avant les parois
 - On utilise souvent du méthane (CH_4) ou de l'isobutane (C_4H_{10})
 - Avec le temps, le quencher (isolant la plupart du temps) se dépose sur le fil et perturbe le fonctionnement du détecteur
- Le choix du gaz est une alchimie complexe entre le gain, le vieillissement, le coût, la sécurité, ...
- Exemple typique : 70% Ar, 29,6% C₄H₁₀ et 0,4% Fréon

Les MWPC

- Extension du principe par Charpak et al (1968)
 - MWPC = Multi Wire Proportional Chamber
 - Typiquement : L = 5 mm, d = 1 mm
- La résolution est limitée à

$$\sigma \approx \frac{d}{\sqrt{12}}$$

• Soit 300 μ m pour *d* = 1 mm

Lignes de champ autour des fils d'anode

Extension moderne des compteurs proportionnels : les TGC

- TGC = Thin Gap Chamber
- Opération en mode saturé (entre les régimes proportionnel et Geiger)
- Temps de montée très bref (2 ns)
 - Utile pour faire un trigger !
- Accepte des taux de comptage élevés (jusqu'à 10⁶ Hz)

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
 - 1) Généralités
 - 2) Détecteurs à ionisation : compteurs proportionnels
 - 3) Détecteurs à ionisation : chambres à dérive
 - 4) Détecteurs à scintillation
 - 5) Détecteurs à semi-conducteurs
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Chambres à dérive

- Un inconvénient majeur des MWPC est que le volume de détection est faible. On peut au contraire avoir des volumes très élevés avec des chambres à dérive
- La mesure du temps permet d'accéder à la coordonnée x :

- Processus de diffusion
- Comment évaluer la vitesse ?
- Détecteur relativement lent
 - Temps de dérive typiques : 5 cm/ μ s (e⁻), 0,05 cm/ μ s (ions)

scintillator

$$x$$

 $drift$
 $drift$

1

Diffusion et dérive

 En l'absence de champ, les électrons et les ions vont diffuser par collision sur les atomes du gaz
 dN/dx

- Plus la chambre sera grande, plus la diffusion va étaler la trace (dimensions transverses et longitudinale)
- En présence d'un champ \vec{E} , les électrons vont se déplacer avec une vitesse moyenne constante $\vec{F_v} = -\frac{m}{\tau}\vec{v} \implies \vec{v_D} = \frac{e\tau}{m_e}\vec{E}$ $\vec{F_v}$: force de frottement visqueux

- En présence de champs *E* et *B*. Deux cas particuliers :
 - E et B orthogonaux
 - On définit l'angle de Lorentz par $tan(\alpha_L) = \omega \tau$ et la fréquence cyclotron par $\omega = eB/\gamma m_e$
 - La vitesse de dérive n'est plus parallèle à E

B

- E et B parallèles
 - La diffusion longitudinale est inchangée, mais dans la direction transverse, les e⁻ spiralent sur un cercle de rayon v_T/ω
 - Le coefficient de diffusion transverse devient

$$D_T(B) = \frac{D_T(0)}{1 + \omega^2 \tau^2} \qquad \text{Inférieur à } \mathcal{D}_T(0) \parallel$$

- La mesure de la 2^e coordonnée transverse est facile à obtenir :
 - en croisant des MWPC
 - en prenant deux orientations de fils différentes dans une chambre à dérive

La présence du champ *B* modifie la dérive des e

Un exemple de chambres à dérives : les TPC

- TPC = Time Projection Chamber
- E//B (solénoïde). Le coefficient de diffusion transverse est réduit car typiquement $\omega \tau \approx 10$!
- La base des détecteurs de traces sur collisionneurs e⁺e⁻
- Permet une reconstitution des traces en 3D
 - x et y viennent du fil et du segment touchés
 - □ *z* provient du temps de dérive
- Permet également une mesure de dE/dx
- Calibration pour la connaissance précise de E dans tout le volume

La 1^{re} TPC (PEP-4)

Les TPC de STAR et d'ALEPH

Extensions récentes : GEM

- Feuille Cu-Kapton-Cu percée regulièrement de trous de 30-50 μm
- 200 à 400 V entre les 2 faces
- 100 à 1000 e⁻ produits par un e⁻ unique à l'entrée d'un trou
- Grandes surfaces possibles
- Possibilité d'un système en « mille-feuille »

P. Puzo, Décembre 2012

Extensions récentes : MSGC

- MSGC = Micro Strip Gas
 Chamber
- Segmentation fine, petite cellule (≈ 3-5 mm)
 - Plus de fils fragiles
 - Rapide
 - Substrat en verre (pas de silicium !)
 - Basé sur les techniques de la microélectronique
- Optimisé pour les flux élevés

Solution envisagée initialement pour le tracker de CMS

P. Puzo, Décembre 2012

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
 - 1) Généralités
 - 2) Détecteurs à ionisation : compteurs proportionnels
 - 3) Détecteurs à ionisation : chambres à dérive
 - 4) Détecteurs à scintillation
 - 5) Détecteurs à semi-conducteurs
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Détecteurs à scintillation

 Certains milieux transparents émettent un peu de lumière après excitation par une particule chargée (fluorescence ou phosphorescence)

Rappels :

- L'émission d'un photon par un atome est due à un retour vers un état plus fondamental d'un électron sur un état excité de l'atome
- On parle d'incandescence (lumière chaude) quand le mode d'excitation du noyau est le chauffage, et de luminescence (lumière froide) dans les autres cas
- Quand l'émission du y suit immédiatement l'excitation, on parle de fluorescence et de phosphorescence quand il y a un délai

- Ces photons peuvent être détectés par un milieu photosensible qui doit être transparent à la longueur d'onde du rayonnement
- On considèrera deux types de matériaux :
 - Les scintillateurs inorganiques
 - Milieux denses, bon rendement, relativement lents
 - Idéal pour la détection de particules chargées et de γ
 - Chers!

Les scintillateurs organiques

- Milieux légers, faible rendement, relativement rapides
- Faible efficacité de détection des γ
- Très bon marché!

- Le temps de montée du signal est très rapide (1-2 ns) et surtout plus rapide que les détecteurs d'ionisation
 - Systèmes de déclenchement et mesures de temps de vol
- La décroissance est au contraire très lente (constante de temps ≈ 100-200 ns)

- Réponse linéaire sauf à très basse énergie : calorimétrie ! Temps
- Les photons doivent traverser le milieu pour atteindre la zone photosensible. Le nombre de photons transmis est :

$$N(x) = N_0 \exp\left(-\frac{x}{\lambda}\right)$$
 $\lambda : \text{longueur d'atténuation}$

Pour des détecteurs de grande dimension, il faut $\lambda \approx 1$ m ou plus

Scintillateurs inorganiques

- Deux types de matériaux :
 - Cristaux (NaI, BaF₂, BGO, PbWO₄, ..)
 - Souvent plusieurs constantes
 de temps (de 1-2 ns à 100 ms)
 et pas forcement avec la même
 longueur d'onde (typiquement 200-500 nm)

- Très forte dépendance avec la température
- 10^3-10^4 photons/MeV, sauf pour PbWO₄ (~ 100)

BaBar : CsI(TI) : 16 X_0 L3 : BGO : 22 X_0 CMS : PWO(Y) : 25 X_0

P. Puzo, Décembre 2012

« L » signifie « liquide »

- Liquides nobles (LAr, LXe, LXr)
 - Plusieurs constantes de temps (de 100 à 1000 ns), mais même longueur d'onde (120-170 nm)
 - 4 10⁴ photons/MeV pour LXe
 - Inconvénient : températures cryogéniques
- Dans les deux cas, le mécanisme de la fluorescence est dû aux états intermédiaires des impuretés du milieu

Scintillateurs organiques

- Structures monocristallines (naphtalène, anthracène, ..)
- Scintillateurs (liquides ou plastiques)
 - Mélange (complexe) d'un solvant et d'une petite quantité de dopant(s) qui décale(nt) le rayonnement vers des longueurs d'onde plus élevées : Wave Length Shifting (WLS)
 - Ce dopant absorbe les photons de scintillation et les re-émet rapidement (~ 1 ns) dans une longueur d'onde plus propice à la détection (typiquement

de 300 vers 500 nm)

Quelques composés principaux et leurs dopants

	solvent	secondary	tertiary
		fluor	fluor
Liquid	Benzene	p-terphenyl	POPOP
scintillators	Toluene	DPO	BBO
	Xylene	PBD	BPO
Plastic	Polyvinylbenzene	p-terphenyl	POPOP
scintillators	Polyvinyltoluene	DPO	TBP
	Polystyrene	PBD	BBO
			DPS

Application : fibres scintillantes

Calorimétrie :

Exemple du calorimètre hadronique de ATLAS

- Tracking :
 - □ Fibres hexagonales, carrées, ...
 - On peut éviter tout crosstalk entre voies (métallisation des surfaces)

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
 - 1) Généralités
 - 2) Détecteurs à ionisation : compteurs proportionnels
 - 3) Détecteurs à ionisation : chambres à dérive
 - 4) Détecteurs à scintillation
 - 5) Détecteurs à semi-conducteurs
- III. Détection des photons
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Détecteurs à semi-conducteurs

- Les détecteurs à semi-conducteurs forment un type particulier de détecteur à ionisation : au lieu d'exciter (ou d'ioniser) le milieu, une particule chargée qui traverse un semi-conducteur crée des paires e-/trous quasi libres
 - \Box On applique un champ *E* pour collecter les charges
- On considèrera :
 - Le silicium : particules chargées et photons
 - □ Le germanium : photons
- Il faut ≈ 3 eV pour créer une paire e-/trou (pour Si et Ge), contre ≈ 30 eV pour un détecteur à ionisation et ≈ 300 eV pour un scintillateur !!

Avantages :

- Très bonne résolution en énergie (sans égale à basse énergie)
- Détecteur compact (puisque solide)
 - Bon candidat pour un détecteur de trace
- Très bonne linéarité en énergie
 - Sauf pour les particules très ionisantes (ions lourds) pour qui des effets de charge d'espace limitent la résolution
- □ Temps de montée \approx quelques ns
- Inconvénients :
 - Coût, fragilité, sensibilité aux radiations

Détecteurs Silicium

- Avantage : le Si est très abondant sur Terre
- Peut être manipulé par les techniques de la microélectronique
- Très haute densité (2,33 g/cm³) : un MIP va créer \approx 100 paires e-/trou par μm
 - Épaisseur typique 300 μ m \Rightarrow 3 10⁴ paires e-/trou en moyenne
- Inconvénients :
 - Pas de mécanisme de multiplication de la charge
 - Coût, sensibilité aux radiations

Les semi-conducteurs

- Isolant qui peuvent transporter du courant
 - Intermédiaire entre isolant et conducteur

Jonction PN

 $\square \Rightarrow \ll$ grand \gg volume de détection

- Il n'y a pas de porteurs de charges libres dans la zone de déplétion
- L'énergie déposée par dE/dx crée des paires e⁻/ions. Grâce au champ de déplétion, les électrons dérivent vers le côté n, et les trous vers le côté p

P. Puzo, Décembre 2012

Détecteur pixel

- On segmente le Si en une matrice. L'électronique de lecture devra être segmentée de la même manière
- Utilisé de manière extensive pour les détecteurs de traces d'ATLAS, ALICE et CMS ; assembled in

ATLAS Prel

2 2.5 p (GeV)

 10^{5}

 10^{4}

 10^{3}

 10^{2}

10

CCD

- CCD = Charge Couple Device : photodétecteur à transfert de charges
 - Détection des photons (paires e⁻-trou)
 - Accumulation des charges dans des capacités MOS (Metal Oxyde Semiconductor)

Cellule individuelle CCD

Détecteur CCD

p stops

- On transfère ensuite les charges accumulées dans une cellule vers sa voisine
- Lecture des canaux en série
 - 2000 e⁻ uniquement, mais temps de lecture élevé

Bon marché car commercial (et linéaire !)

readout

P. Puzo, Décembre 2012

Nouvelles tendances : détecteurs 3D

- Détecteurs 3D et détecteurs fins « sans bord », basés sur l'électronique 3D (moins de crosstalk et de puissance dissipée)
- 2D SoC Е Long Global wire block shorter wire Replaced by 3D IC

wafer surface

Ugrade des détecteurs LHC?

Détecteur au germanium

- Photons uniquement
- Excellente résolution
- Peut être très compact

Euroball

Energie des photons

Mais très cher

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
 - 1) Généralités
 - 2) Par l'intermédiaire de particules chargées
 - 3) Par effet thermique
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Rappel : spectre complet et sa partie visible

- On peut imaginer plusieurs méthodes pour détecter des photons :
 - Initier l'apparition d'une particule chargée qui sera détectable
 - En utilisant l'effet photoélectrique
 - En utilisant le mécanisme de la création de paires : on verra cela dans le chapitre sur la calorimétrie
 - Mesurer directement le flux thermique

Plan

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
 - 1) Généralités
 - 2) Par l'intermédiaire de particules chargées
 - 3) Par effet thermique
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

- On utilise l'effet photoélectrique pour amener les photons à induire des photoélectrons
 - Mécanisme : γ + atome \rightarrow atome⁺ + e⁻
 - Photoélectron = électron issu d'un processus initié par un photon

 On privilégie souvent les matériaux à forte efficacité quantique (Q.E.) :

$$Q.E. = \frac{N_{Photoélectrons}}{N_{Photons}}$$

Efficacités quantiques

- Généralement < 30% pour les photocathodes (sous vide)
- On a souvent besoin de verre pour isoler la photocathode du milieu extérieur

Tube photomultiplicateur

- PMT = Photo Multiplier Tube
 - Photoémission sur la photocathode (couche mince d'un métal alcalin)
 - Emission secondaire sur les autres dynodes (souvent en CuBe) portées à des potentiels croissants
 - 2 à 5 e⁻ par e⁻ incident
- Gain élevé
 - Valeurs typiques : 10 dynodes de gain 4
 ⇒ gain total = 4¹⁰ ≈ 10⁶ et même parfois 10⁷
 - Détection d'un photon unique (efficacité ≈ 10%) !

Schéma de principe d'un PMT à 13 dynodes

Tube photomultiplicateur

Dynodes à affinité électronique négative pour minimiser la rétro émission des ions

- multiplier anode
- La configuration des dynodes est très délicate
- Inconvénient : grande dimension du tube !

Schéma de principe d'un PMT à 13 dynodes

Galettes de microcanaux

- MCP = Micro Channel Plate
 - \square Diamètre des canaux \thickapprox 2-10 μm
 - 0,5 mm d'épaisseur
 - □ Gain de 10⁷ en associant 2 MCP en série
 - Dispersion du temps de transit : 50 ps
 - Peu sensible à un champ magnétique

Applications : vision nocturne, détection d'une charge unique

Tube multi-anode

- MAPMT = Multi Anode Photo Multiplier Tube
- Exemple : Pots Romains de ATLAS
 - Fibres scintillantes carrées de 0,5 mm

Extrémité des fibres

- Hamamatsu R7600
- 8x8 canaux
- Q.E._{max} = 40%
- Gain ≈ 10⁶ à 900 V

Spectre de photoélectrons à 950 V

Extension : HPD

- HPD = Hybrid Photo Diodes
- Photocathode + détecteur Si (pixel, strips ou pads)
- Electrodes de focalisation
 Réduction du nombre de pixels pour un détecteur équivalent
- Utilisé pour le HCAL de CMS (fibres) et pour le RICH de LHCb

Focalisation croisée grâce aux électrodes pour LHCb

SiPM ou MPPC

- SiPM = Silicon PhotoMultiplier MPPC = Multi-Pixel Photon Counter
- Constitué de milliers de cellules photo-détectrices de 20 à 100 µm de côté
 - La réponse de chaque cellule est binaire : elle émet une quantité fixée d'électrons si elle est traversée par un photon
 - Le signal du SiPM est la somme des signaux de l'ensemble des cellules : mesure analogique de la quantité de photons reçus (allant du photon unique à plus de 10⁴ photons)
- Avantages : QE ≈ 20%, insensible au champ magnétique, compact, alimentation < 100 V, moins cher que les PM : alternative crédible aux PM
- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
 - 1) Généralités
 - 2) Par l'intermédiaire de particules chargées
 - 3) Par effet thermique
- IV. Identification des particules
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Bolomètres

- Principe : convertir l'énergie du rayonnement incident en chaleur
 La puissance incidente est absorbée par un matériau idoine
 - On mesure l'élévation de température
- Les bolomètres peuvent couvrir l'intégralité du spectre EM mais sont spécialisés sur un domaine de longueur d'onde particulier (IR, ..)
- Afin d'accroitre leur sensibilité et de réduire l'influence de leur bruit intrinsèque (ie le rayonnement qu'ils émettent eux-mêmes), les bolomètres opèrent souvent à des températures < 4 K (LHe) ou même < 0.1 K (LHe³-LHe⁴), même si certains fonctionnent avec des YBaCuO (≈ 90 K)

- Pour l'astronomie infrarouge ou submillimétrique :
 - Absorbeur sous forme d'une grille qui capture le rayonnement EM
 - Déposé sur un substrat de faible capacité calorifique
- Ordre de grandeur des sensibilités : couramment jusqu'à 1 µK ie 10⁻¹⁶ W
 Détection d'une lampe de 100 W

Bolomètres de Herschel

à 300 000 km

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
 - 1) Généralités
 - 2) Mesure de dE/dx
 - 3) Mesure du temps de vol
 - 4) Effet Cherenkov
 - 5) Rayonnement de transition
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Identification des particules

- Les processus utilisés ici ont tous en commun d'avoir une perte d'énergie très faible car on ne veut pas altérer l'énergie des particules au cours de cette phase
- 4 méthodes principales :
 - Mesure de dE/dx
 - Mesure du temps de vol
 - Rayonnement Cherenkov
 - Rayonnement de transition

L'identification nécessite également la connaissance de l'impulsion

> Peut être suffisant pour l'identification

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
 - 1) Généralités
 - 2) Mesure de *dE/dx*
 - 3) Mesure du temps de vol
 - 4) Effet Cherenkov
 - 5) Rayonnement de transition
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

• On a vu que :

$$p = \gamma M \beta c$$

$$\frac{dE}{dx} \propto \frac{1}{\beta^2} \ln \left(\beta^2 \gamma^2\right)$$

$$\Rightarrow Une mesure simultanée de p et de dE/dx défini la masse M$$

Cette méthode est valable pour des basses impulsions (< 10 GeV/c)

Mesure de *dE/<u>dx</u>*

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
 - 1) Généralités
 - 2) Mesure de dE/dx
 - 3) Mesure du temps de vol
 - 4) Effet Cherenkov
 - 5) Rayonnement de transition
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

P. Puzo, Décembre 2012

Principes et techniques de détection - IV

Exemple : NA49 (1/2)

P. Puzo, Décembre 2012

Exemple : NA49 (2/2)

P. Puzo, Décembre 2012

Principes et techniques de détection - IV

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
 - 1) Généralités
 - 2) Mesure de dE/dx
 - 3) Mesure du temps de vol
 - 4) Effet Cherenkov
 - 5) Rayonnement de transition
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

Effet Cherenkov

 Un rayonnement Cherenkov est émis quand une particule chargée traverse un milieu diélectrique avec une vitesse β supérieure à la vitesse de la lumière dans le milieu :

$$\frac{v}{c} > \frac{1}{n} \implies \beta > \beta_{seuil} = \frac{1}{n}$$

n: indice du milieu (*n* > 1)

L'émission a lieu sur un cône d'angle au sommet θ_c tel que :

$$\cos(\theta_c) = \frac{1}{n\beta}$$

 Se produit dans tous les milieux transparents, y compris les scintillateurs, mais 100 fois plus faible que la scintillation

P. Puzo, Décembre 2012

- Un détecteur basé sur l'effet Cherenkov peut mesurer :
 - Le nombre de photons émis (détecteur à seuil)
 - L'angle d'ouverture du cône (détecteur RICH)

Détecteur à seuil

• On peut choisir *n* pour un seuil de vitesse $\beta_{th} = 1/n$, qui correspond à un seuil supérieur en masse :

$$p = m \gamma \beta c \implies m_{th} = \frac{p}{c} \sqrt{n^2 - 1}$$

- Les particules ayant $m > m_{th}$ n'émettront pas de lumière
- On peut ainsi sélectionner les particules plus lourdes ou plus légères que m_{th} C_1 C_2 C_3

Exemple d'un séparateur $\pi/K/p$ Aérogel Néopentane Ar - Ne $n_1 = 1,025$ Néopentane Ar - Ne $n_2 = 1,0017$ $n_3 = 1,000135$ $n_1 > n_2 > n_3$

- On utilise par exemple souvent un Cherenkov à gaz pour séparer les e⁻ et les π[±] (l'indice de réfraction est alors réglé par la pression du gaz)
- Exemple : Détecteur à seuil pour BELLE pour la séparation π/p

Détecteur RICH

 Les RICH (Ring Imaging CHerenkov) déterminent θ_c en interceptant le cône de lumière avec un plan photosensible :

$$\theta_c = \arccos\left(\frac{1}{n\,\beta}\right) = \arccos\left(\frac{1}{n\,pc}\right) = \arccos\left(\frac{1}{n\,pc}\right) = \arccos\left(\frac{1}{n\,pc}\right)$$

$$\cos\left(\frac{1}{n}\sqrt{1+\frac{m^2c^2}{p^2}}\right)$$

- Un des inconvénients est qu'il faut une grande surface de détection pour les photons
- Un autre est la chasse aux impuretés !

Rayonnement Cherenkov

Exemple : Le RICH de DELPHI

- Ce détecteur comprenait deux radiateurs et un photodétecteur
- Permettait la séparation π/K/p entre 0,7 et 45 GeV/c ⇒ Enorme gamme dynamique !!
- Signal très propre

P. Puzo, Décembre 2012

Rayonnement Cherenkov

Exemple : Le DIRC de BaBar (1/2)

« Usine à B » asymétrique

Exemple : Le DIRC de BaBar (2/2)

P. Puzo, Décembre 2012

Rayonnement Cherenkov

- I. Interaction particule-matière
- II. Reconstruction des traces chargées
- III. Détection des photons
- IV. Identification des particules
 - 1) Généralités
 - 2) Mesure de dE/dx
 - 3) Mesure du temps de vol
 - 4) Effet Cherenkov
 - 5) Rayonnement de transition
- v. Calorimétrie
- VI. Exemples de détecteurs de physique des hautes énergies

- Un « rayonnement de transition » est émis lorsqu'une particule chargée traverse un milieu présentant une discontinuité de l'indice de réfraction (ex : vide – diélectrique)
- Quelques calculs complexes d'électromagnétisme montrent que :
 - \square L'énergie émise à chaque transition est $\propto \gamma$
 - ⇒ Dans la pratique, les e[±] sont les seules particules qui vont émettre un rayonnement de transition (⇒ identification !!)
 - □ Le nombre de photons émis à chaque transition est très faible ($\approx 1/137$)
 - ⇒ Il faut de nombreuses transitions d'où une « structure en sandwitch »
 - \Box Le rayonnement est émis dans un angle $\theta \thickapprox 1$ / γ
 - Les photons sont typiquement de l'ordre du keV

 Sandwitch de radiateurs et de détecteurs alternés

- Les radiateurs sont souvent des feuilles de CH₂ (faible Z car la réabsorption est ∝ Z⁵)
- Les détecteurs sont généralement gazeux (MWPC, straw tubes, ..) et utilisent des gaz lourds (Z élevé car le nombre de photo-électrons est ∝ Z⁵)
- Problème intrinsèque au détecteur
 - ⇒ Mettre un seuil élevé
- Utilisé dans le Transition Radiation Tracker (TRT) de ATLAS

Conclusion sur l'identification des particules

- Il existe de nombreuses méthodes différentes pour identifier les particules
 - Leurs zones d'utilisation sont très variables

 Plus l'environnement est « hostile », plus on cherchera la redondance des informations

Techniques « exotiques » d'identification

- Il existe d'autres techniques d'identification, principalement basées sur la photographie
 - Chambres à brouillard
 - Chambres à bulles
 - Emulsions
- La plupart d'entre elles ne sont plus utilisées de nos jours